Tetrahedron Letters 49 (2008) 6334-6336

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Structure elucidation of 21,22-dihydroxyonnamides A₁–A₄ from the marine sponge *Theonella swinhoei*: an empirical rule to assign the relative stereochemistry of linear 1,5-diols

Yoshinari Miyata, Shigeki Matsunaga*

Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

ARTICLE INFO

Article history: Received 23 July 2008 Revised 18 August 2008 Accepted 19 August 2008 Available online 22 August 2008

Keywords: Sponge Onnamide Cytotoxic Stereochemistry 1,5-Diol

ABSTRACT

A polar cytotoxic fraction of the marine sponge *Theonella swinhoei* was analyzed to be a mixture of four isomeric compounds, 21,22-dihydroxyonnamides A_1 , A_2 , A_3 , and A_4 . They were separated after conversion to the isopropyridene derivatives. The structures of the 21*S*,22*S*- and 21*R*,22*R*-isomers were determined by comparison of their spectral data with those prepared from onnamide A by asymmetric dihydroxylation. During the analysis of NMR data of these derivatives, an empirical rule was implied to assign the relative stereochemistry of linear 1,5-diol. This rule was applied to assign the stereochemistry of the remaining congeners.

© 2008 Elsevier Ltd. All rights reserved.

Onnamide A (1) was first isolated from the Okinawan marine sponge *Theonella swinhoei* as an antiviral constituent.¹ Several congeners of onnamide A were isolated from *T. swinhoei* and *Discodermia* sp. as cytotoxins.^{2–4} Onnamide A exhibits cytotoxicity by inhibiting protein synthesis in eukaryotes as does structurally related pederin, isolated from the blister beetle *Paederus fuscipes*.⁵ The putative biosynthetic gene cluster of onnamide A has been cloned from the metagenome of *T. swinhoei* and traced to a pro-karyotic genome.⁶ We have noticed the presence of a more polar and abundant cytotoxic fraction that contained congeners of onnamides, which had not been fractionated further because of its complexity. A renewed interest of this class of metabolites by the discovery of psymberin/irciniastatin^{7.8} prompted us to study the constituents of the polar cytotoxic fraction.

An HPLC fraction eluted in the reverse-phase HPLC prior to onnamide B² was subjected to two rounds of HPLC using ODS and phenylhexyl stationary phases and a mixture of MeOH and phosphate buffer as the mobile phase to afford a cytotoxic peak. Because this material gave a sharp peak in a variety of HPLC conditions, we carried out structure elucidation of this material.⁹ The HRESIMS (*m*/*z* 828.4592 [M+H]⁺) gave a molecular formula of C₃₉H₆₅N₅O₁₄. Interpretation of 2D NMR data allowed the gross structure of this material to be assigned as 21,22-dihydroxyonnamide A: the Δ^{21} -olefinic signals in onnamide A¹ were replaced by

signals assignable to 1,2-diol [$\delta_{\rm H}$ 3.53 m (H-21) and 4.06 m (H-22)]; $\delta_{\rm C}$ 75.2 (C-21) and 76.1 (C-22)] and Δ^{23} -olefinic signals [$\delta_{\rm H}$ 6.18 (H-23) and 6.43 (H-24)]; $\delta_{\rm C}$ 142.2 (C-23) and 130.3 (C-24)] were perturbed as a result of dihydroxylation. Even though the remaining NMR signals appeared homogeneous, H-23 and H-24 signals appeared as complex multiplets implying the presence of a heterogeneity near Δ^{23} -olefin.^{10,11}

Because we reasoned that the heterogeneity arose from the isomerism in the diol portion and because it was reported that the assignment of the relative stereochemistry of 1,2-diol is impossible by standard spectroscopic methods,¹² we converted the mixture to the isopropylidene derivatives by treatment with 2,2-dimethoxypropane in DMF in the presence of PPTS. Fortunately, the product was separated by ODS HPLC into four peaks in a ratio of 2:2:1:1 to afford isopropyridene derivatives of 21,22-dihydroxyonnamides A₁, A₂, A₃, and A₄ (**2–5**, respectively).

Interpretation of COSY and HSQC data indicated that **2–5** had the same gross structure (Tables 1 and 2). In their ¹H NMR spectra, the isopropylidene methyls resonated separately in **2** and **3**, whereas they coalesced in **4** and **5**, suggesting that **2** and **3** were *cis*-acetonides and that **4** and **5** were *trans*-acetonides. This was supported by the ROESY spectra of **2** and **3**, in which one acetonide methyl signal was correlated to both H-21 and H-22, whereas the other methyl signal was correlated to neither H-21 nor H-22.

Because the *trans*-acetonides originate from the 21,22-*cis*-diols, they were considered to be accessible through the asymmetric dihydroxylation of onnamide A.¹³ Onnamide A was oxidized with

^{*} Corresponding author. Tel.: +81 3 5841 5297; fax: +81 3 5841 8166. E-mail address: assmats@mail.ecc.u-tokyo.ac.jp (S. Matsunaga).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.08.057

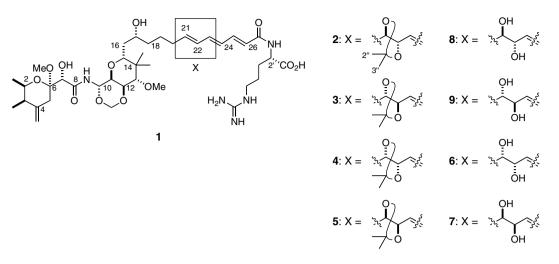


 Table 1

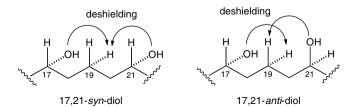
 Selected ¹H NMR data for 2-9 in CD₃OD at 500 MHz^a

Number	2	3	4	5	6	7	8	9
H-7	4.30 s	4.24 s	4.25 s	4.30 s	4.27 s	4.29 s	4.29 s	4.27 s
H-15	3.54 (6.1, 6.1)	3.48 (6.1, 6.1)	3.48 (4.6, 7.6)	3.52 (6.1, 6.1)	3.48 (5.2, 7.0)	3.48 m	3.55 (3.4, 8.9)	3.47 (4.2, 7.6)
H-16ab	4.57 m	1.52 m	1.52 m	1.57 m	1.52 m	1.52 m	1.53 m	1.53 m
H-17	3.68 m	3.61 m	3.63 m	3.68 m	3.63 m	3.66 m	3.66 m	3.62 m
H-18a	1.35 m	1.28 m	1.29 m	1.37 m	1.23 m	1.30 m	1.30 m	1.24 m
H-18b	1.50 m	1.47 m	1.47 m	1.52 m	1.42 m	1.42 m	1.45 m	1.53 m
H-19a	1.49 m	1.28 m	1.34 m	1.53 m	1.32 m	1.48 m	1.48 m	1.36 m
H-19b	1.49 m	1.60 m	1.63 m	1.53 m	1.64 m	1.48 m	1.48 m	1.67 m
H-20a	1.51 m	1.43 m	1.53 m	1.63 m	1.36 m	1.38 m	1.39 m	1.35 m
H-20b	1.55 m	1.43 m	1.62 m	1.63 m	1.54 m	1.49 m	1.54 m	1.59 m
H-21	4.28 m	4.22 (6.4, 6.4, 6.4)	3.72 (3.7, 8.2, 8.2)	3.79 (4.3, 7.9, 7.9)	3.53 m	3.49 m	3.52 m	3.47 m
H-22	4.68 m	4.63 m	4.13 (7.6, 7.6)	4.19 (7.9, 7.9)	4.06 (5.8, 5.8)	4.07 (5.0, 5.0)	4.02 (5.8, 5.8)	4.04 (5.3, 5.3)
H-23	6.09 (7.3, 15.3)	6.03 (7.3, 15.3)	6.04 (7.0, 15.3)	6.10 (7.3, 15.3)	6.15 (5.8, 15.3)	6.17 (5.8, 15.3)	6.20 (6.1, 15.3)	6.21 (6.1, 15.3)
H ₃ -2″	1.39 (3H, s)	1.37 (3H, s)	1.37 (3H, s)	1.43 (3H, s)				
H ₃ -3″	1.50 (3H, s)	1.44 (3H, s)	1.37 (3H, s)	1.43 (3H, s)				

^a Chemical shifts for the remaining portion differ from those of the corresponding positions of onnamide A by less than 0.02 ppm.

AD-mix α or AD-mix β to afford **6** or **7**, respectively, as the major product (Tables 1 and 2). Conversion of **6** to the isopropylidene derivative afforded a compound which gave the ¹H NMR spectrum that was indistinguishable from that of **4**. Similarly, the isopropylidene derivative of **7** was indistinguishable from that of **5**. By considering the stereoselectivity of the reaction,¹⁴ the stereochemistry of **6** and **7** was determined as 21*S*,22*S* and 21*R*,22*R*, respectively.

A comparison of NMR data of 4-7 in the H-15 to H-23 region disclosed a clear trend in chemical shifts, which well reflected the relative stereochemistry of C-17 and C-21 (Table 1). The most significant difference between the ¹H NMR spectra of 4 and 5


Table 2
Selected ¹³ C NMR data for 2-9 in CD ₃ OD at 125 MHz ^a

Number	2	3	4	5	6	7	8	9
C-15	78.8	78.9	78.7	78.8	78.5	78.5	78.5	78.5
C-16	36.8	37.1	37.2	37.1	37.2	36.8	37.0	37.0
C-17	71.2	71.4	71.1	71.1	71.2	71.2	71.2	71.2
C-18	36.8	37.1	37.2	37.1	37.0	36.8	37.0	37.2
C-19	22.9	23.2	23.0	22.9	22.6	22.8	22.6	22.5
C-20	31.5	31.7	33.0	33.0	33.7	33.5	33.9	33.9
C-21	79.7	79.9	82.2	82.2	75.2	75.4	75.6	75.3
C-22	79.9	79.9	82.8	82.9	76.1	76.0	76.2	76.2
C-2″	25.7	25.8	27.0	27.5				
C-3″	28.3	28.3	27.4	27.5				

^a Chemical shifts for the remaining portion differ from those of the corresponding positions of onnamide A by less than 0.3 ppm.

was the chemical shifts of H_2 -19: they were separated by 0.29 ppm in the 17,21-*syn* isomer **4**, whereas they coalesced in the 17,21-*anti* isomer **5**. This trend was conserved in the *syn*-diol **6** and the *anti*-diol **7**. This phenomenon was interpreted as follows. In the 17,21-*syn* isomer, when the relevant portion adopts an extended conformation, one of C-19 methylene protons is close to both oxygen atoms, whereas another methylene proton is distant from both of the oxygens, rendering the two methylene protons nonequivalent.¹⁵ In the 17,21-*anti* isomers, each C-19 methylene proton is close to either of the oxygen atoms, thereby rendering these protons magnetically nearly equivalent (Fig. 1).

Against these backgrounds, we noticed the distinct equivalence and nonequivalence of H_2 -19 signals in **2** and **3**, respectively, indicating the 17,21-*anti* and 17,21-*syn* stereochemistry for **2** and **3**, respectively. Then, we prepared the diols **8** and **9** from **2** and **3**,

Figure 1. Effects of hydroxyl groups on the chemical shifts of methylene protons at 3-position in 1,5-diol.

respectively, by treatment with PPTS and ethylene glycol in MeOH.¹⁶ It was found that H₂-19 signals were equivalent in 8 and nonequivalent in 9 (Tables 1 and 2). Therefore, the stereochemistry of 2 and 8 was assigned as 21R,22S, while that of 3 and 9 was assigned as 21S,22R.

Our rule is also exemplified by the ¹H NMR data of amphidinol 3, which has one 1,5-syn-diol substructure. In this compound, the methylene protons at 3-position were nonequivalent resonating at δ 1.43 and 1.60.¹⁷ Our empirical rule may by useful to assign the relative stereochemistry of natural products with linear 1,5diol substructures.

Acknowledgments

We thank Professor H. Watanabe, Graduate School of Agricultural and Life Sciences. The University of Tokyo, for valuable discussion. This work was partially supported by Grant-in-aid from MEXT (Priority Area 16073207).

References and notes

- 1. Sakemi, S.; Ichiba, T.; Kohmoto, S.; Saucy, G.; Higa, T. J. Am. Chem. Soc. 1988, 110.4851.
- 2. Matsunaga, S.; Fusetani, N.; Nakao, Y. Tetrahedron 1992, 48, 8369.

- 3. Kobayashi, J.; Itagaki, F.; Shigemori, H.; Sasaki, T. J. Nat. Prod. 1993, 56, 976.
- 4. Paul, G. K.; Gunasekera, S. P.; Longley, R. E.; Pomponi, S. A. J. Nat. Prod. 2002, 65, 59
- 5. Lee, K.-H.; Nishimura, S.; Matsunaga, S.; Fusetani, N.; Horinouchi, S.; Yoshida, M. Cancer Sci. 2005, 96, 357.
- 6. Piel, J.; Hui, D.; Wen, G.; Butzke, D.; Platzer, M.; Fusetani, N.; Matsunaga, S. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 16222.
- 7. Petit, G. R.; Xu, J.-P.; Chapuis, J.-C.; Pettit, R. K.; Tackett, L. P.; Doubek, D. L.; Hooper, J. N.; Schmidt, J. M. J. Med. Chem. 2004, 47, 1149.
- Cichewicz, R. H.; Valeriote, F. A.; Crews, P. Org. Lett. **2004**, 6, 1951. The fraction [yellowish solids; $[\alpha]_D^{22}$ +73 (*c* 0.050, MeOH); UV (MeOH) λ_{max} 9 263 nm (ε 2290); HRESIMS (positive) m/z 828.4592 [M+H]⁺ (calcd for C₃₉H₆₅N₅O₁₄, 828.4606)] exhibited an IC₅₀ value of 40 ng/mL against P388 cells. Because the fraction was composed of four isomers in a ratio of 2:2:1:1 (vide infra), none of the isomers exhibits very potent cytotoxicity.
- 10 It was not possible to decipher H-21 and H-22 signals, because they were both broad multiplets.
- 11. ¹H chemical shifts of the fraction coincided with those of onnamide A with an error of less than 0.02 ppm except for H-7 and those placed between H₂-18 and H-26. Chemical shifts of 10-O-CH (δ 5.48) and H-13 (3.62) should be corrected as 5.20 and 3.64 ppm, respectively. The influence of the oxidation at C-21 and C-22 on H-7 indicated the spatial vicinity of these portions.
- 12. Higashibayashi, S.; Kishi, Y. Tetrahedron 2004, 60, 11977.
- 13. Zhang, Y.; O'Doherty, G. A. Tetrahedron 2005, 61, 6337.
- 14. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
- 15. Abraham, R. J.; Byrne, J. J.; Griffiths, L.; Loniotou, R. Magn. Reson. Chem. 2005, 43, 611.
- Compounds **4** and **5** resisted methanolysis under the same condition. 16.
- Murata, M.; Matsuoka, S.; Matsumori, N.; Paul, G. K.; Tachibana, K. J. Am. Chem. 17. Soc. 1999, 121, 870.